

1
2 **Large-Scale Screening of *E. coli* Promoters for Small**
3 **Molecule Biosensor Development**
45 **Saanvi Dogra^{*1}, Jason Gao^{*1}, Dishti Wadhwani^{*1}, Risha Guha^{†1}, Nithika Vivek^{†1}, Lauren**
6 **Chen¹, Anwita Bandaru^{‡1}, Shawn Kim^{‡1}, David Lanster^{2,3}**

7 * Authorship arranged in alphabetical order. These authors contributed equally to this work.

8 † Authorship arranged in alphabetical order. These authors contributed equally to this work.

9 ‡ Authorship arranged in alphabetical order. These authors contributed equally to this work.

10 ¹ Del Norte High School, San Diego, California11 ² Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 9203712 ³ Skaggs-Oxford Doctoral Program in Chemical and Biological Sciences, The Scripps Research
13 Institute, La Jolla, CA, 9203714
15 **SUMMARY**16 The field of synthetic biology makes significant contributions to healthcare, environmental
17 engineering, and technology through the manipulation of cellular macromolecules and whole
18 organisms. Oftentimes, these advancements are dependent upon biosensors to report on an
19 activity of interest within a cell or to detect extracellular cues and report on them in a
20 measurable way. This project was undertaken as part of iGEM 2024 (Internationally Genetic
21 Engineered Machines Competition 2024) centered around the choice of 10 small molecules
22 related to environmental and human health with the goal of developing transcriptional
23 biosensors to report on their concentrations. Each molecule was screened against a library of
24 over 2000 promoter-GFP constructs in search of promoters responsive to each molecule.
25 Further, a Deep Learning model was used to predict active promoter-molecule pairs and in silico
26 putative hits from the screen were analyzed with molecular docking. While no robust biosensor
27 hits were found for the molecules of interest, our work demonstrates a useful pipeline for further
28 small molecule biosensor development.29
30 **INTRODUCTION**31 Biosensors are analytical devices that elicit a measurable signal in response to specific
32 biological processes or the presence of a molecule. Using these tools, scientists have made
33 crucial breakthroughs in disease diagnosis and drug detection (such as measuring the
34 remaining medicine in a bloodstream), environmental monitoring, food control, forensics, and
35 biotechnology [1]. Biosensor development is often the first step in the detection and
36 biodegradation of toxic chemical compounds, such as residual pesticides on fruits and

38 vegetables, microbial degradation products, and the presence of Persistent Organic Pollutants
39 (POP). In a laboratory setting, an ideal biosensor elicits a response proportional to the amount
40 of analyte present through the action of a “transducer” that recognizes the analyte and
41 generates a measurable output.

42 This study was specifically focused on developing allosteric transcription factor (TF)-
43 based biosensors in *E. coli*. Currently, there is a lack of well-established biosensors for
44 numerous health and environmentally relevant molecules. Therefore, the goal of this project is
45 to identify TF-promoter pairs that respond to several different molecules as a starting point for
46 future biosensor development. TFs are able to bind small molecule ligands and, as a result of
47 this binding, can impact the transcription of target genes. TFs rely on promoter sequences to
48 control their responses. Promoters are DNA sequences that regulate when and how strongly a
49 gene is expressed. In bacteria, biosensors often produce Green Fluorescent Protein (GFP)
50 under the control of a specific promoter as the measurable output. GFP produces a fluorescent
51 signal that can be measured to determine if the promoter driving its expression is responsive to
52 small molecule induction [2]. A 2006 paper from the Weizmann Institute of Science presents a
53 comprehensive library of ~2000 transcriptional promoters from *Escherichia coli* K12 called the
54 Horizon Promoter Collection (HPC). *E. coli* is a well-studied gram-negative bacterium commonly
55 used for biosensor development since the strain is easily cultured and manipulated, and
56 nonpathogenic, making it an ideal biosensor chassis [3]. Each promoter in the HPC carries a
57 unique promoter (covering most well-known *E. coli* promoters) cloned to drive GFP from a low-
58 copy number plasmid. This collection presents an exciting opportunity to explore a multitude of
59 different molecules and promoter combinations to aid in developing biosensors.

60 Ten molecules were chosen to test with each of the promoters in the HPC because of their
61 relevance to human and environmental health. Development of biosensors for these molecules
62 would prove useful in commercial and clinical settings. The molecules chosen were: carbaryl
63 (CAR), 3-phenoxybenzoic acid (PBA), lovastatin (LOV), butanoyl-homoserine (BHL),
64 phenylglyoxylic acid (PGA), propoxur (PRO), perfluorooctane sulfonate (PFS), cis-naphthalene
65 dihydrodiol (CHD), diethyl phthalate (DEP), and tartaric acid (TAR). Carbaryl is a man-made
66 pesticide toxic to insects and over 190 registered pesticide products contain it [4]. 3-
67 phenoxybenzoic acid is a prominent environmental contaminant because it is a degradation
68 product of pyrethroid insecticides [5]. Lovastatin is a medication that is used to lower cholesterol
69 levels in blood and help prevent cardiovascular diseases such as heart attacks or strokes [6].
70 Butanoyl-homoserine lactone is a signaling molecule used in quorum sensing and is used in
71 synthetic biology to engineer bacterial systems with customized gene expression profiles [7].

72 Phenylglyoxylic acid is a breakdown product of styrene, a material used to make plastics and
73 rubber, making it an exposure biomarker used in environmental and occupational health to
74 monitor the level of styrene and other related compounds [8]. Propoxur is a carbamate
75 insecticide used to control a variety of pests; however, long term exposure can cause
76 decreased cholinesterase levels in humans [9]. Perfluoro octane sulfonate is a man-made
77 surfactant and global pollutant as it can cause cancer and developmental toxicity [10]. Cis-
78 Naphthalene dihydrodiol is an intermediate in the microbial degradation of naphthalene, an
79 insecticide, making it a useful biomarker [11]. Diethyl Phthalate is a synthetic substance used to
80 make plastic more flexible, and it easily contaminates the environment when diluted with other
81 liquids [12]. Tartaric acid is a type of alpha hydroxy acid naturally found in many plants, and it is
82 commonly used to generate carbon dioxide. It acts as a muscle toxin by inhibiting the production
83 of malic acid [13]. Cumulatively, these representative compounds span diverse molecular and
84 functional classes and make for compelling screening candidates.

85

86 **RESULTS**87 *High-Throughput HPC Screen*

88 To establish a basis for this project, an initial high-throughput screen was performed to
89 nominate any potential promoters responsive to each inducer molecule. This screen was
90 conducted by testing each of the ten molecules against the entire promoter library. The testing
91 was carried out in 96-well plate format, with cells grown in LB and a single inducer at 500 mM.
92 After incubation for 24 hours, fluorescence was measured with a plate reader and wells with the
93 highest fluorescence were nominated for downstream studies. The 8-12 promoters that
94 produced the most fluorescence greater than 1.35 AU (average sfGFP/OD600 divided by
95 average promoter value for each molecule) for each of the molecules were identified (**Table 1**).

96 Because of the scale of the initial screen, it was undertaken at only one concentration of
97 inducer and with only one replicate of each strain. Therefore, any putative hits were followed up
98 using a titration of the inducer molecules and in triplicate. The strains were titrated across eight
99 concentrations from 0 to 10 mM of their corresponding molecules to examine how the
100 fluorescence varies with concentration. We expected to see a dose-dependent response in
101 fluorescence to increasing inducer molecules. While many promoters did not follow the
102 expected trend, some were indeed titratable: BHL with the P_{ydeI} promoter produced a 1.7 times
103 fold increase, CND with the P_{ybCK} promoter produced a 2.2 times fold increase, CND with the
104 P_{aegA} promoter produced a 2.8 times fold increase, and DEP with the P_{yfifF} promoter produced a
105 2.0 times fold increase from the lowest to highest measurement (**Figure 2**).

106 To test the specificity of our results and take the background activity of each promoter
107 into account, we compared the molecule-specific sfGFP value to the average sfGFP value
108 across the other 9 screened molecules. In one example, a CAR-induced 260% increase of grxA
109 sfGFP/OD600 over the average sfGFP/OD600 indicates molecule-specific activation of this
110 promoter (**Figure 3**).

111 We next sought to pursue optimization of the biosensors by exploring alternative plasmid
112 architectures including changing the origin of replication to vary copy number, the fluorescent
113 protein, and its ribosomal binding site. We generated and annotated a plasmid map with gadB
114 fused to sfGFP (responsive to Butanoyl-Homoserine Lactone) and indicated the plasmid
115 structure, promoter regions, and replication origins for use (**Figure 4**). While we did not have
116 time to clone new variants of the plasmid, the map may be a useful starting point for others
117 continuing our work.

118

119 *Machine Learning*

120 A deep learning multi-stream neural network was used to predict whether a given
121 molecule-promoter pair produces a fluorescent response. After training, the model was able to
122 correctly classify a molecule-promoter pair as fluorescent or non-fluorescent 96% of the time,
123 indicating precise and consistent results.

124 Training, validation, and test data for this model were all molecule-promoter
125 combinations that belong to one of two classes: fluorescent response or non-fluorescent
126 response. Class distributions of the inputs to the machine learning model show an even
127 distribution of data belonging to each class — ~48 and ~52 for non-fluorescence and
128 fluorescence, respectively (**Figure 6C**). This indicates that the data was well-split and the model
129 remained unbiased towards either class.

130 To understand the impact of adding DNA promoter sequences to the multi-stream neural
131 network, the two machine learning networks (one with the sequences and one without) were
132 compared. Firstly, the capabilities of each network were compared to understand their accuracy.
133 Both loss graphs decrease over multiple epochs, indicating that both models achieved a higher
134 accuracy as they iterate over the data. Both graphs eventually plateau, demonstrating that each
135 model achieves its best accuracy by the end of its training. The validation data line continues to
136 remain close to the training, indicating that the model was able to achieve a balance between
137 learning and generalizing without overfitting. An accuracy of 96% (>80%) and low loss of both
138 models also rule out the possibility of the model underfitting.

139 Our next goal was to compare the two accuracies and capabilities of the models with
140 and without the DNA sequences. In the model without the DNA data, training and validation loss
141 plateaued at a higher value than in the model with DNA data (**Figure 6**). Loss and accuracy are
142 inversely proportional. Plots of the loss curve without DNA data (**Figure 7A**) and the loss curve
143 with DNA data (**Figure 7B**) plateau at ~5 and ~0.05, respectively, suggesting a lower accuracy
144 for the model without nucleotide sequences.

145 A Receiver Operating Characteristic (ROC) plots the False Positive Rate vs the True
146 Positive Rate. The ROC curve of the predictions generated by the model (**Figure 6D**) has an
147 area under the curve of 0.96, which represents the testing accuracy for the model. The high
148 area under the curve also showcases the ability of the model to maximize the True Positive
149 Rate while minimizing the False Positive Rate.

150 Additional statistics depict the effect of adding DNA sequences on the accuracy of the
151 model and a dropout is used to mitigate any possible overfitting. Dropouts remove random
152 subsets of neurons in the network during each iteration throughout the training process. This
153 ensured that the model did not memorize the training data. As demonstrated by statistical
154 analysis of model outputs, though training accuracy drops slightly, the validation and testing
155 accuracies improve in both iterations of the model (with and without DNA data), suggesting that
156 the use of dropout and regularization increases the generalization of the data, creating a more
157 useful and wide-scale model. Finally, we present the accuracy metrics as a percentage (ranging
158 from 75-95%). The data supports the conclusions made above: the model is more accurate
159 when DNA data is used and the data is regularized due to the incorporation of more data that
160 better aids the model in making a more informed decision of the fluorescence of a molecular-
161 promoter pair (**Figure 7**).

162

163 *Modeling*

164 A molecular docking process was utilized to better understand the physical interactions
165 behind potential DNA-TF pairs by visualizing the DNA-protein interactions between transcription
166 factors and their cognate promoters. P_{gadE} , P_{gadB} , and P_{YdeO} were some of the promoters
167 identified to have the largest fold increase with increasing concentrations of the respective
168 molecule they detect (**Table 1**). The YdeO promoter controls expression of gadB, part of the
169 acid-resistant GAD pathway. Structural modeling of P_{ydeO} binding to its transcription factor,
170 GadB, reveals the nucleotides critical for stable binding and the position of the alpha helix
171 oriented perpendicular to the DNA backbone (**Figure 5**). In the future, this information could
172 allow for targeted mutagenesis of the transcription factor DNA binding domain or the promoter

173 sequence to enhance binding and improve the dynamic range of the sensor. Additionally, the
174 modeling helps our understanding of small molecule-protein interactions, which can guide future
175 biosensor development by identifying which molecular structures are more compatible with
176 which compounds.

177 Simulation of the Nac transcription factor showed binding to a double helix present on
178 the structure of P_{ybck} (**Figure 5**). Nac controls biotic and abiotic stress tolerance, and
179 overexpression of Nac through cell engineering approaches can improve stress tolerance. Nac
180 regulates P_{ybck} by activating it, increasing stress response and tolerance. Similarly, the DNA-
181 binding regulator YidZ binds to P_{rof} (**Figure 5**). When YidZ is activated under stressed
182 conditions, P_{rof} is activated, which ensures that the genes responding to environmental stress
183 are transcribed correctly in order to properly limit the biological impact of the stress.

184

185 DISCUSSION

186 This study used a library of *E. coli* promoters to develop biosensors capable of detecting
187 various molecules. By screening approximately 6,720 promoter-molecule combinations, we
188 identified promoters that may respond to exposure to some of our molecules of interest. Notable
189 results include the PgadB-YdeO promoter-transcription factor interaction, which achieved a 2.8-
190 fold increase in fluorescence over background fluorescence calculated in the screen and the
191 PgrxA-CAR pairing, which showed a 260% specificity increase over competing molecules.
192 These findings establish a foundation for further biosensor development.

193 A key contribution of this study lies in validating the fluorescence trends across varying
194 molecule concentrations. The consistently increasing fluorescence supported the hypothesis
195 that these molecules act as inducers for GFP transcription. However, certain inconsistencies in
196 fluorescence levels at intermediate concentrations indicate the need for replicates to enhance
197 the robustness of these trends. Environmental conditions, including media composition and
198 incubation duration, could also influence fluorescence and warrant further standardization.

199 The incorporation of a multi-stream neural network significantly advanced our ability to
200 predict fluorescence outcomes for promoter-molecule pairings. The inclusion of promoter DNA
201 sequences notably enhanced model accuracy, yielding a high ROC AUC of 0.96, which
202 underscores the model's reliability. This approach provides a scalable framework for predicting
203 biosensor viability beyond the molecules tested here.

204 Despite these successes, several limitations are present in this study. First, while the
205 study utilized a diverse range of molecules, expanding the scope to include additional
206 compounds could refine the model's generalizability. Second, while dropout regularization

207 improves model performance, further optimization of hyperparameters may enhance accuracy
208 and reduce potential overfitting. Additionally, the docking simulations, although informative,
209 were constrained to specific DNA-protein interactions. Broader simulations could provide deeper
210 insights into the mechanistic interactions underlying the observed fluorescence.

211 The identified promoter-molecule pairs provide a starting point for developing tailored
212 biosensors applicable in fields ranging from environmental monitoring to healthcare diagnostics.
213 For instance, the PgrxA promoter's specificity to carbaryl suggests its potential in detecting
214 pesticide residues. Similarly, the robust performance of the PgadB-ydeO interaction in acidic
215 conditions highlights its utility in studying stress-response pathways in bacteria.

216 Future research should focus on validating these findings through *in vivo* studies and
217 exploring their applications in real-world scenarios. Additionally, expanding the dataset and
218 refining machine learning algorithms will enhance predictive accuracy, enabling more efficient
219 biosensor design. Ultimately, this study underscores the potential of synthetic biology in
220 addressing pressing environmental and healthcare challenges through innovative biosensor
221 technologies.

222

223 MATERIALS AND METHODS

224 *Media and Chemicals*

225 LB Broth medium was created using 50 g yeast extract, 50 g peptone, and 25 g sodium
226 chloride to 5 L of water in a volumetric flask and mixed with a magnetic stir bar. The medium
227 was divided into several bottles and autoclaved. One milliliter of 1000X Kanamycin (25 mg/mL)
228 was added to each autoclaved 1 L bottle before use. The minimal M9 medium was prepared by
229 adding 52 g M9 salts (KH₂PO₄ at 15 g/L, NaCl at 2.5 g/L, Na₂HPO₄ at 33.9 g/L, NH₄Cl at 5 g/L)
230 into 4.9 L of DI water. The medium was autoclaved and stored at room temperature. Then, 20 g
231 filter-sterilized glucose was added to the M9 salt solution to a final concentration of 20 mM. A
232 10mL MgSO₄ (2 mM) and 0.5ml CaCl₂ (0.1 mM) was added to the 5 L solution before use.

233 Based on their available quantities, the molecules were dissolved into individual
234 solutions. A 500mM solution for 3-Phenoxybenzoic Acid (128.4 mg in 1 mL DMSO), Lovastatin
235 (242.7 mg in 1 mL DMSO), Propoxur (125.4 mg in 1 mL ethanol), and Perfluorooctane
236 Sulfonate (247.6 mg in 1 mL water) was created. Diethyl Phthalate was already in a solution of
237 121.2 μ L. A 1 M solution of Tartaric Acid (150 mg in 1 mL water), Carbaryl (201.22 mg in 1 mL
238 DMSO), Butanoyl-Homoserine Lactone (171.19 mg in 1 mL DMSO), Phenylglyoxylic Acid
239 (150.13 mg in 1 mL DMSO), and Cis-Naphthalene Dihydrodiol (162.16 mg in 1 mL water).

240

241 *Strains*

242 All strain handling was done in 96 well plates. To each well of the plates, 250 μ L of LB
243 Broth with kanamycin was added using a multichannel pipette. The promoter collection is
244 supplied in twenty-one 96 well plates. To inoculate the strains, one of the twenty-one plates was
245 removed from the -80° freezer. Sterile tips attached to a Gilson PlateMaster machine were
246 lowered onto the 96-well strain plate, moved side to side to collect some bacteria, then lifted and
247 lowered onto one of the 96-deep-well plates with the media. The pipettes were mixed in the
248 broth to distribute the bacteria. A gas permeable covering was rolled onto the top of each of
249 these plates and they were grown overnight in an incubator at 37°C with 900 RPM orbital
250 shaking to encourage *E. coli* growth.

251

252 *Fluorescence Assays*

253 One mL of 1 mM concentrated molecule stocks were added to 200mL of M9 media.
254 Each of the stocks were then thoroughly mixed with the M9 media through using stir bars and
255 heating up to dissolve the concentrated molecule stocks. Using a multichannel pipette, 275 μ L
256 of each molecule M9 solution was added to each well of the different 96-deep-well plates. For
257 each plate, a Gilson PlateMaster was used to add 2.75 μ L of cells with promoters into each well
258 containing molecules. Each promoter was matched to each different molecule for one iteration.
259 The PlateMaster was also used to transfer 150 μ L from the assay deep well plates into a 96-well
260 black walled, clear bottom plate. The 96-well plates were inputted into the Plate Reader at 37°C
261 with shaking for 10 seconds to measure absorbance in each well using a 600nm wavelength
262 and fluorescence with 485 nm excitation wavelength and 510 nm emission wavelength. The
263 resulting data was analyzed to select the 8-12 promoters with at least a 1.35 average
264 sfGFP/OD600 divided by average promoter value for each molecule.

265

266 *Dose Responses*

267 500 μ L of 1x Kanamycin LB broth was added to each well of 96-deep-well plates using a
268 multichannel pipette. The startup procedure was repeated on only the most fluorescent
269 promoters selected, with autoclaved toothpicks used to transfer cells into the wells. After the
270 strains grew in the incubator overnight, 2.75 μ L cells/well were added to another 96-deep-well
271 plate. For titration, serial dilutions of eight concentrations of the molecule (0 nM, 10 nM, 100 nM,
272 1 μ M, 10 μ M, 100 μ M, 1 mM, and 10 mM) with three replicates for each were prepared for each
273 molecule-promoter pair. After 24 hr growth the plates were analyzed the same as above. The

274 trends of fluorescence with increasing concentration of the respective molecules were analyzed
275 to identify the best promoter to detect each.

276

277 **Machine Learning**

278 Using data produced from wet lab experiments, we created and trained a multi-stream
279 neural network machine learning model that predicts if a molecule-*E. coli* promoter combination
280 generates a fluorescent response.

281 Our input variables consisted of molecule name, promoter protein sequence, promoter
282 DNA sequence, and molecular structure. Our output variable was the significance (fluorescent
283 response) of the molecule promoter pair. Class distributions were analyzed to ensure that the
284 class split was close to 50-50 to ensure equal data feeding of each class. Each input variable in
285 text form was transformed into numerical values. Molecule name was assigned a value between
286 1 to 10. Promoter protein sequence was encoded into a numerical value using label encoded
287 and promoter DNA sequence was encoded using a hash function which condensed 10,000
288 base-pair long DNA sequences into a value less than 1000. Molecular structure images were
289 stored as NPZs for the model to analyze. All input variables were normalized and divided by a
290 common number to contain ranges from 0 to 1. Train, test, and validation datasets were
291 generated by grouping the original data into 70-20-10 split randomly.

292 The model was first tested without DNA data of each promoter sequence. Loss results
293 were obtained from this model. Then the DNA data (from EcoCyc) was added to obtain new
294 loss results. The model was designed to combine both the image and tabular inputs by building
295 a multi modal pipeline. The image was analyzed using a convolutional neural network and the
296 tabular data was analyzed using a dense neural network. The two modes were trained
297 independently on the surface level and then combined to analyze trends in both simultaneously.
298 The model outputs a probability between 0 and 1 for the pair to produce a fluorescent response.
299 Thresholds >0.5 for class 1 and <0.5 for class 0 were defined to ensure a binary output. The
300 model was then tested on the generated test data to ensure little to no overfitting. An ROC
301 curve (a plot of the number of false positive results generated by the model versus the number
302 of true positive results when testing data was used) was created to visualize the results.

303

304 **Modeling**

305 To model DNA-protein interactions, three primary promoters were selected for their high
306 titration levels with BHL in our research: P_{ybck} , P_{gadB} , and P_{rpf} . Using the Ecocyc database, we
307 identified transcription factors that bind to these promoters. Then, the nucleotide sequences of

308 the promoters and the protein sequences of the transcription factors were input into AlphaFold
309 to generate predictions of DNA-protein complexes. The resulting models were visualized in
310 PyMol to identify and analyze the binding interfaces.

311

312 REFERENCES

313 [1] Bhatia, D., Paul, S., Acharjee, T., & Sundar Ramachairy, S. (2023, July 23). Biosensors and
314 their widespread impact on human health. *Science Direct*. Retrieved September 14, 2024

315 [2] Feng Y, Xie Z, Jiang X, Li Z, Shen Y, Wang B, Liu J. (2018) The Applications of Promoter-
316 gene-Engineered Biosensor, *Sensors*, 18(9)

317 [3] Zaslaver, A., Bren, A., Ronen, M., Itzkovitz, S., Kikoin, I., Shavit, S., Liebermeister, W.,
318 Surette, M. G., & Alon, U. (2006). A comprehensive library of fluorescent transcriptional
319 reporters for *Escherichia coli*. *Nature methods*, 3(8), 623–628.

320 [4] Carbaryl | C12H11NO2 | CID 6129. (n.d.). *PubChem*. Retrieved September 14, 2024

321 [5] 3-Phenoxybenzoic acid | C13H10O3 | CID 19539. (n.d.). *PubChem*. Retrieved September
322 14, 2024

323 [6] Lovastatin. (n.d.). *MedlinePlus*. Retrieved September 14, 2024

324 [7] PubChem. (n.d.). N-Butyrylhomoserine lactone. *PubChem*.

325 [8] Benzoylformic acid | C8H6O3 | CID 11915. (n.d.). *PubChem*. Retrieved September 14, 2024

326 [9] Propoxur | C11H15NO3 | CID 4944. (n.d.). *PubChem*. Retrieved September 14, 2024

327 [10] PFOS (Perfluorooctane Sulfonate or Perfluorooctane Sulfonic Acid) - Proposition 65
328 Warnings Website. (n.d.). P65Warnings.ca.gov. Retrieved September 14, 2024

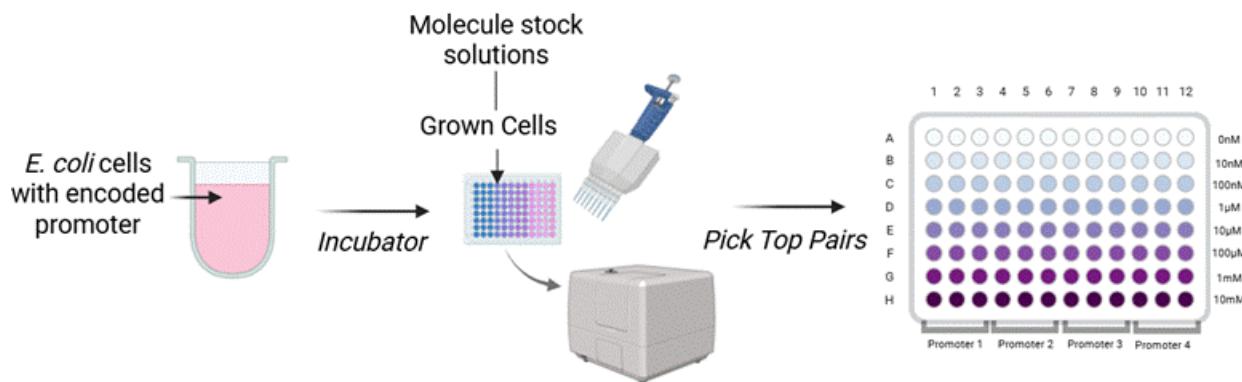
329 [11] (1R, 2S)-cis 1,2 dihydroxy-1,2-dihydronaphthalene: Uses, Interactions, Mechanism of
330 Action | *DrugBank Online*. (n.d.). *DrugBank*.

331 [12] Diethyl Phthalate | C12H14O4 | CID 6781. (n.d.). *PubChem*. Retrieved September 14, 2024

332 [13] L-Tartaric acid | C4H6O6 | CID 444305. (n.d.). *PubChem*. Retrieved September 14, 2024

333

334 **Figures and Figure Captions**



335

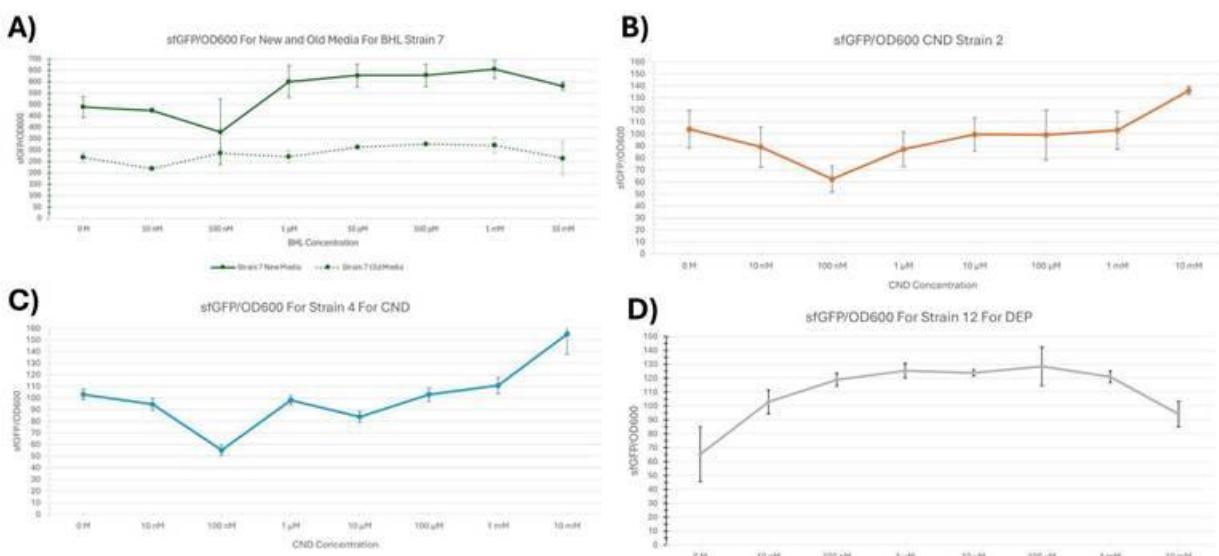
1. Grow *E. coli* with promoters

2. Test Each Molecule-Promoter Pair

3. Titrations of best pairs

336

Figure 1. Schematic of the methodology used in this research

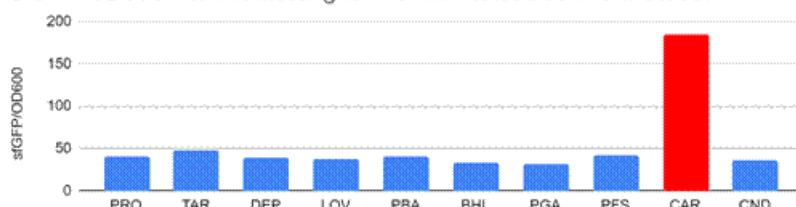


337

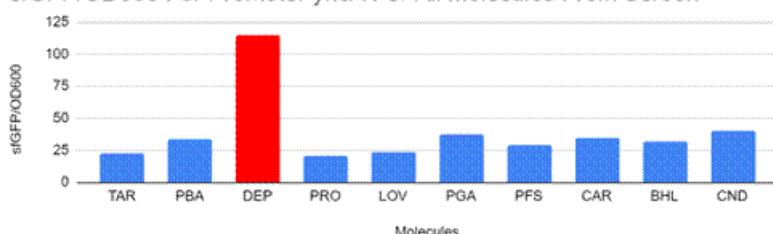
338 **Figure 2.** sfGFP/OD600 trends across increasing concentrations from 0 M to 10 mM of the
339 molecule for the four best performing molecule-promoter combinations, **A)** BHL with the P_{ydel}
340 promoter, **B)** CND with the P_{ybcK} promoter, **C)** CND with the P_{aegA} promoter, **D)** DEP with the
341 P_{yfiF} promoter. The error bars represent ± 1 SD.

342

A) sfGFP/OD600 For Promoter grxA For All Molecules From Screen

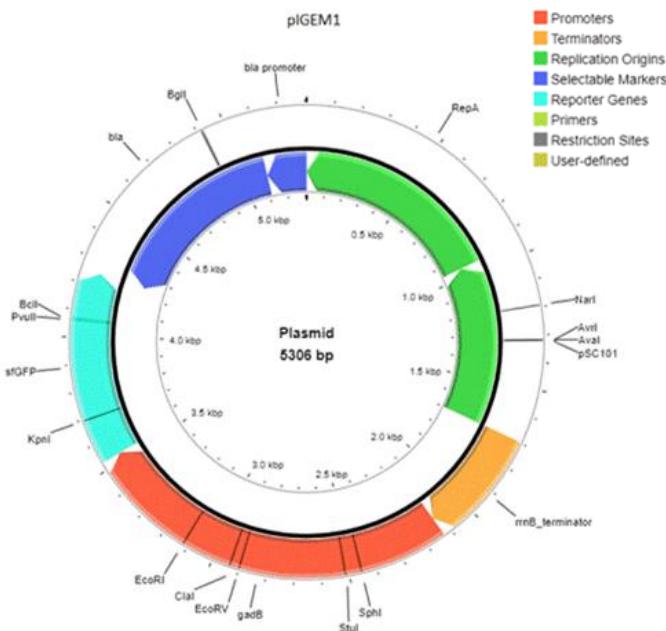


B) sfGFP/OD600 For Promoter yhcA For All Molecules From Screen



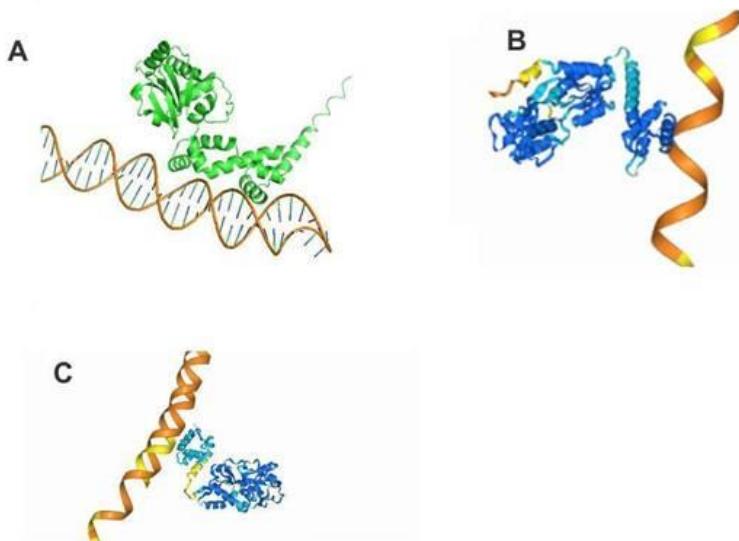
343

344 **Figure 3.** The sfGFP/OD600 value for the **A) P_{grxA}** promoter and the **B) P_{yhcA}** promoter across all
345 ten molecules screened. CAR produced the one of the largest fluorescent signals with $grxA$ and
346 $yhcA$ produced one of the largest fluorescent signals with $yhcA$, with both values highlight in
347 orange in their respective graphs.



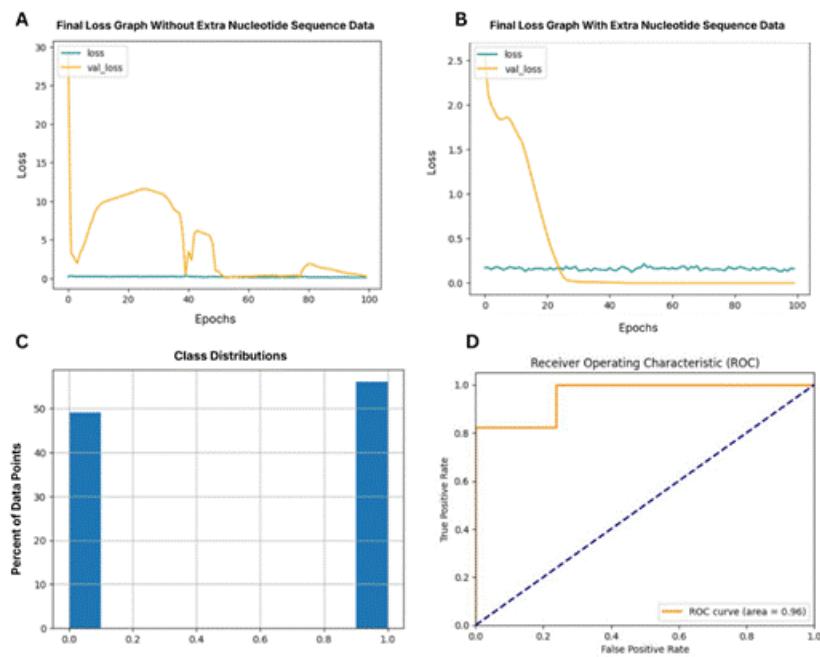
348

349 **Figure 4.** Plasmid map created with $gadB$ fused to sfGFP to serve as a potential biosensor for
350 Butanoyl-Homoserine Lactone when transformed into *E. coli*. The structure indicates the
351 plasmid structure, promoter regions, and replication origins.



352

353 **Figure 5.** Modeling of the interactions between proteins and transcriptional factors. **A)** Binding
354 of transcriptional factor YdeO(green) to gadB, where YdeO activated the transcription initiation
355 for gadB. **B)** Binding of transcriptional factor Nac(blue) to ybcK, where Nac initiated
356 transcription. **C)** Binding between transcriptional factor YidZ to P_{rif}, where YidZ inhibits
357 transcription initiation

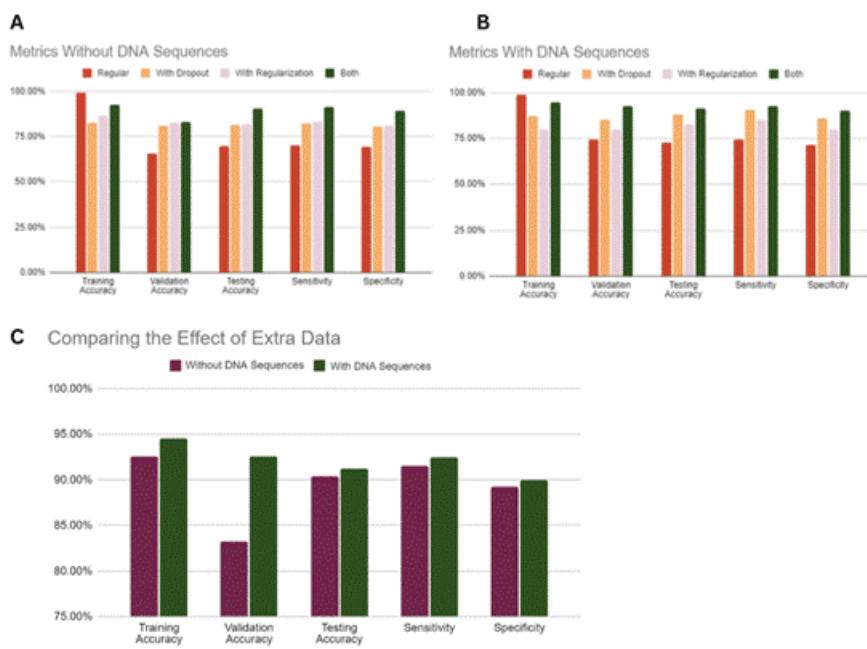


358

359 **Figure 6.** Training and validation loss, represented by the teal and orange lines respectively, **A)**
360 without and **B)** with the addition of nucleotide data from EcoCyc. **C)** Class distributions (binary)

13

361 of data (fluorescent and non-fluorescent), **D**) Receiver Operating Characteristic curve and area
362 based on the true and false positive rates



363

364 **Figure 7.** Training, validation, and testing accuracy + sensitivity and specificity of model with
365 varied dropout and regularization levels (red represents regular, yellow represents inclusion of
366 dropout, purple represents inclusion of regularization, and green represents both) **A**) without
367 and **B**) with addition of nucleotide sequences to training data, respectively. **C**) Comparison of
368 training, validation, and testing accuracies + sensitivity and specificity after addition of DNA data
369 with purple presenting lack of DNA sequences and green representing the presence of them

370 **Tables with Captions**

PBA	LOV	PRO	DEP	TAR	CAR	BHL	PGA	PFS	CND
2.08 fadB	2.84 map	1.83 mngR	2.67 yhcA	2.13 deoC	4.29 ycfR	1.89 eutB	2.01 alaS	2.45 yagK	1.97 yffH
2.07 glgS	1.85 rmf	1.73 gcl	1.57 yraR	1.75 yciG	3.52 recA	1.83 gadW	1.70 glyA	1.45 yffH	1.59 ybcK
1.80 ycfR	1.81 ompX	1.57 YPD-A	1.56 def	1.71 ydcJ	2.82 grxA	1.56 lpxC	1.52 yhjY	1.40 adhE	1.45 asnA
1.63 cyoA	1.73 rbsD	1.52 yacH	1.53 prpR	1.67 alsB	2.75 rrnD	1.53 gadB	1.52 ygiW	1.39 fadB	1.44 aegA

1.60 yrbL	1.73 ydcJ	1.51 metK	1.53 yaeH	1.55 yjbJ	1.62 gsk	1.51 yqjF	1.52 thrU	1.37 hslV	1.37 sieB
1.60 ycjM	1.70 alsB	1.48 pppA	1.53 rof	1.54 tnaC	1.52 yqjF	1.51 b4283	1.48 yciG	1.36 yeiP	1.37 metC
1.56 yibL	1.60 cspB	1.45 yaaJ	1.50 yhbX	1.52 uspG	1.51 aspA	1.50 ydel	1.45 ychH	1.35 fdoG	1.37 U139
1.56 ygeY	1.58 nmpC	1.42 yaaW	1.50 slp	1.50 yqjH	1.49 hyfR	1.46 yeiP	1.44 ybhQ	1.35 ypfG	1.36 rihC
1.51 ycjG	1.55 rpmE	1.40 glnK	1.42 yqjG	1.50 pitB	1.47 aes	1.42 deoB	1.40 sodC	—	—
1.42 aldH	1.55 yhjY	1.40 ylbE	1.42 cca	1.49 prpR	1.45 rfe	1.42 ygiW	1.39 hupA	—	—
1.40 yafS	1.53 cspD	1.40 ykgM	1.39 yhfG	1.49 ygeH	1.45 eaeH	1.38 ycdZ	1.39 galR	—	—
1.40 hscB	1.52 uspF	1.39 yedP	1.39 yfiF	1.46 rhsD	1.41 U139	1.38 mglB	1.38 rssB	—	—

371 **Table 1.** The sfGFP/OD600 divided by average promoter value and promoter name of the best
 372 8-12 promoters that produced the highest fluorescence for each of the ten molecules. PBA
 373 represents 3-Phenoxybenzoic Acid, LOV represent Lovastatin, PRO represents Propoxur, DEP
 374 represents Diethyl Phthalate, TAR represents Tartaric Acid, CAR represents Carbaryl, BHL
 375 represents Butanoyl-Homoserine Lactone, PGA represents Phenylglyoxylic Acid, PFS
 376 represents Perfluoroctane Sulfonate, and CND represents Cis-Naphthalene Dihydrodiol. To
 377 establish a basis for biosensor development, a series of experiments were conducted using the
 378 library of promoters and these ten molecules that we selected to determine which combination
 379 was most effective by observing their fluorescence. While the level of fluorescence in our final
 380 strains had some drops and inconsistencies at certain concentrations, the overall increasing
 381 trend indicated that these strains can be further researched to be eventually developed into
 382 effective biosensors.