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SUMMARY 16 

The field of synthetic biology makes significant contributions to healthcare, environmental 17 

engineering, and technology through the manipulation of cellular macromolecules and whole 18 

organisms. Oftentimes, these advancements are dependent upon biosensors to report on an 19 

activity of interest within a cell or to detect extracellular cues and report on them in a 20 

measurable way. This project was undertaken as part of iGEM 2024 (Internationally Genetic 21 

Engineered Machines Competition 2024) centered around the choice of 10 small molecules 22 

related to environmental and human health with the goal of developing transcriptional 23 

biosensors to report on their concentrations. Each molecule was screened against a library of 24 

over 2000 promoter-GFP constructs in search of promoters responsive to each molecule. 25 

Further, a Deep Learning model was used to predict active promoter-molecule pairs and in silico 26 

putative hits from the screen were analyzed with molecular docking. While no robust biosensor 27 

hits were found for the molecules of interest, our work demonstrates a useful pipeline for further 28 

small molecule biosensor development. 29 

 30 

INTRODUCTION 31 

Biosensors are analytical devices that elicit a measurable signal in response to specific 32 

biological processes or the presence of a molecule. Using these tools, scientists have made 33 

crucial breakthroughs in disease diagnosis and drug detection (such as measuring the 34 

remaining medicine in a bloodstream), environmental monitoring, food control, forensics, and 35 

biotechnology [1]. Biosensor development is often the first step in the detection and 36 

biodegradation of toxic chemical compounds, such as residual pesticides on fruits and 37 
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vegetables, microbial degradation products, and the presence of Persistent Organic Pollutants 38 

(POP). In a laboratory setting, an ideal biosensor elicits a response proportional to the amount 39 

of analyte present through the action of a “transducer” that recognizes the analyte and 40 

generates a measurable output.  41 

This study was specifically focused on developing allosteric transcription factor (TF)-42 

based biosensors in E. coli. Currently, there is a lack of well-established biosensors for 43 

numerous health and environmentally relevant molecules. Therefore, the goal of this project is 44 

to identify TF-promoter pairs that respond to several different molecules as a starting point for 45 

future biosensor development. TFs are able to bind small molecule ligands and, as a result of 46 

this binding, can impact the transcription of target genes. TFs rely on promoter sequences to 47 

control their responses. Promoters are DNA sequences that regulate when and how strongly a 48 

gene is expressed. In bacteria, biosensors often produce Green Fluorescent Protein (GFP) 49 

under the control of a specific promoter as the measurable output. GFP produces a fluorescent 50 

signal that can be measured to determine if the promoter driving its expression is responsive to 51 

small molecule induction [2]. A 2006 paper from the Weizmann Institute of Science presents a 52 

comprehensive library of ~2000 transcriptional promoters from Escherichia coli K12 called the 53 

Horizon Promoter Collection (HPC). E. coli is a well-studied gram-negative bacterium commonly 54 

used for biosensor development since the strain is easily cultured and manipulated, and 55 

nonpathogenic, making it an ideal biosensor chassis [3]. Each promoter in the HPC carries a 56 

unique promoter (covering most well-known E. coli promoters) cloned to drive GFP from a low-57 

copy number plasmid. This collection presents an exciting opportunity to explore a multitude of 58 

different molecules and promoter combinations to aid in developing biosensors. 59 

Ten molecules were chosen to test with each of the promoters in the HPC because of their 60 

relevance to human and environmental health. Development of biosensors for these molecules 61 

would prove useful in commercial and clinical settings. The molecules chosen were: carbaryl 62 

(CAR), 3-phenoxybenzoic acid (PBA), lovastatin (LOV), butanoyl-homoserine (BHL), 63 

phenylglyoxylic acid (PGA), propoxur (PRO), perfluorooctane sulfonate (PFS), cis-naphthalene 64 

dihydrodiol (CHD), diethyl phthalate (DEP), and tartaric acid (TAR). Carbaryl is a man-made 65 

pesticide toxic to insects and over 190 registered pesticide products contain it [4]. 3-66 

phenoxybenzoic acid is a prominent environmental contaminant because it is a degradation 67 

product of pyrethroid insecticides [5]. Lovastatin is a medication that is used to lower cholesterol 68 

levels in blood and help prevent cardiovascular diseases such as heart attacks or strokes [6]. 69 

Butanoyl-homoserine lactone is a signaling molecule used in quorum sensing and is used in 70 

synthetic biology to engineer bacterial systems with customized gene expression profiles [7]. 71 
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Phenylglyoxylic acid is a breakdown product of styrene, a material used to make plastics and 72 

rubber, making it an exposure biomarker used in environmental and occupational health to 73 

monitor the level of styrene and other related compounds [8]. Propoxur is a carbamate 74 

insecticide used to control a variety of pests; however, long term exposure can cause 75 

decreased cholinesterase levels in humans [9]. Perfluoro octane sulfonate is a man-made 76 

surfactant and global pollutant as it can cause cancer and developmental toxicity [10]. Cis-77 

Naphthalene dihydrodiol is an intermediate in the microbial degradation of naphthalene, an 78 

insecticide, making it a useful biomarker [11]. Diethyl Phthalate is a synthetic substance used to 79 

make plastic more flexible, and it easily contaminates the environment when diluted with other 80 

liquids [12]. Tartaric acid is a type of alpha hydroxy acid naturally found in many plants, and it is 81 

commonly used to generate carbon dioxide. It acts as a muscle toxin by inhibiting the production 82 

of malic acid [13]. Cumulatively, these representative compounds span diverse molecular and 83 

functional classes and make for compelling screening candidates.  84 

  85 

RESULTS 86 

High-Throughput HPC Screen 87 

To establish a basis for this project, an initial high-throughput screen was performed to 88 

nominate any potential promoters responsive to each inducer molecule. This screen was 89 

conducted by testing each of the ten molecules against the entire promoter library. The testing 90 

was carried out in 96-well plate format, with cells grown in LB and a single inducer at 500 mM. 91 

After incubation for 24 hours, fluorescence was measured with a plate reader and wells with the 92 

highest fluorescence were nominated for downstream studies. The 8-12 promoters that 93 

produced the most fluorescence greater than 1.35 AU (average sfGFP/OD600 divided by 94 

average promoter value for each molecule) for each of the molecules were identified (Table 1). 95 

Because of the scale of the initial screen, it was undertaken at only one concentration of 96 

inducer and with only one replicate of each strain. Therefore, any putative hits were followed up 97 

using a titration of the inducer molecules and in triplicate. The strains were titrated across eight 98 

concentrations from 0 to 10 mM of their corresponding molecules to examine how the 99 

fluorescence varies with concentration. We expected to see a dose-dependent response in 100 

fluorescence to increasing inducer molecules. While many promoters did not follow the 101 

expected trend, some were indeed titratable:  BHL with the Pydel promoter produced a 1.7 times 102 

fold increase, CND with the PybcK promoter produced a 2.2 times fold increase, CND with the 103 

PaegA promoter produced a 2.8 times fold increase, and DEP with the PyfiF promoter produced a 104 

2.0 times fold increase from the lowest to highest measurement (Figure 2). 105 
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To test the specificity of our results and take the background activity of each promoter 106 

into account, we compared the molecule-specific sfGFP value to the average sfGFP value 107 

across the other 9 screened molecules. In one example, a CAR-induced 260% increase of grxA 108 

sfGFP/OD600 over the average sfGFP/OD600 indicates molecule-specific activation of this 109 

promoter (Figure 3). 110 

We next sought to pursue optimization of the biosensors by exploring alternative plasmid 111 

architectures including changing the origin of replication to vary copy number, the fluorescent 112 

protein, and its ribosomal binding site. We generated and annotated a plasmid map with gadB 113 

fused to sfGFP (responsive to Butanoyl-Homoserine Lactone) and indicated the plasmid 114 

structure, promoter regions, and replication origins for use (Figure 4). While we did not have 115 

time to clone new variants of the plasmid, the map may be a useful starting point for others 116 

continuing our work. 117 

 118 

Machine Learning 119 

A deep learning multi-stream neural network was used to predict whether a given 120 

molecule-promoter pair produces a fluorescent response. After training, the model was able to 121 

correctly classify a molecule-promoter pair as fluorescent or non-fluorescent 96% of the time, 122 

indicating precise and consistent results. 123 

Training, validation, and test data for this model were all molecule-promoter 124 

combinations that belong to one of two classes: fluorescent response or non-fluorescent 125 

response. Class distributions of the inputs to the machine learning model show an even 126 

distribution of data belonging to each class — ~48 and ~52 for non-fluorescence and 127 

fluorescence, respectively (Figure 6C). This indicates that the data was well-split and the model 128 

remained unbiased towards either class. 129 

To understand the impact of adding DNA promoter sequences to the multi-stream neural 130 

network, the two machine learning networks (one with the sequences and one without) were 131 

compared. Firstly, the capabilities of each network were compared to understand their accuracy. 132 

Both loss graphs decrease over multiple epochs, indicating that both models achieved a higher 133 

accuracy as they iterate over the data. Both graphs eventually plateau, demonstrating that each 134 

model achieves its best accuracy by the end of its training. The validation data line continues to 135 

remain close to the training, indicating that the model was able to achieve a balance between 136 

learning and generalizing without overfitting. An accuracy of 96% (>80%) and low loss of both 137 

models also rule out the possibility of the model underfitting. 138 
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Our next goal was to compare the two accuracies and capabilities of the models with 139 

and without the DNA sequences. In the model without the DNA data, training and validation loss 140 

plateaued at a higher value than in the model with DNA data (Figure 6). Loss and accuracy are 141 

inversely proportional. Plots of the loss curve without DNA data (Figure 7A) and the loss curve 142 

with DNA data (Figure 7B) plateau at ~5 and ~0.05, respectively, suggesting a lower accuracy 143 

for the model without nucleotide sequences. 144 

A Receiver Operating Characteristic (ROC) plots the False Positive Rate vs the True 145 

Positive Rate. The ROC curve of the predictions generated by the model (Figure 6D) has an 146 

area under the curve of 0.96, which represents the testing accuracy for the model. The high 147 

area under the curve also showcases the ability of the model to maximize the True Positive 148 

Rate while minimizing the False Positive Rate.  149 

Additional statistics depict the effect of adding DNA sequences on the accuracy of the 150 

model and a dropout is used to mitigate any possible overfitting. Dropouts remove random 151 

subsets of neurons in the network during each iteration throughout the training process. This 152 

ensured that the model did not memorize the training data. As demonstrated by statistical 153 

analysis of model outputs, though training accuracy drops slightly, the validation and testing 154 

accuracies improve in both iterations of the model (with and without DNA data), suggesting that 155 

the use of dropout and regularization increases the generalization of the data, creating a more 156 

useful and wide-scale model. Finally, we present the accuracy metrics as a percentage (ranging 157 

from 75-95%). The data supports the conclusions made above: the model is more accurate 158 

when DNA data is used and the data is regularized due to the incorporation of more data that 159 

better aids the model in making a more informed decision of the fluorescence of a molecular-160 

promoter pair (Figure 7). 161 

 162 

Modeling 163 

A molecular docking process was utilized to better understand the physical interactions 164 

behind potential DNA-TF pairs by visualizing the DNA-protein interactions between transcription 165 

factors and their cognate promoters. PgadE, PgadB, and PYdeO were some of the promoters 166 

identified to have the largest fold increase with increasing concentrations of the respective 167 

molecule they detect (Table 1). The YdeO promoter controls expression of gadB, part of the 168 

acid-resistant GAD pathway. Structural modeling of PydeO binding to its transcription factor, 169 

GadB, reveals the nucleotides critical for stable binding and the position of the alpha helix 170 

oriented perpendicular to the DNA backbone (Figure 5). In the future, this information could 171 

allow for targeted mutagenesis of the transcription factor DNA binding domain or the promoter 172 
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sequence to enhance binding and improve the dynamic range of the sensor. Additionally, the 173 

modeling helps our understanding of small molecule-protein interactions, which can guide future 174 

biosensor development by identifying which molecular structures are more compatible with 175 

which compounds. 176 

Simulation of the Nac transcription factor showed binding to a double helix present on 177 

the structure of PybcK (Figure 5). Nac controls biotic and abiotic stress tolerance, and 178 

overexpression of Nac through cell engineering approaches can improve stress tolerance. Nac 179 

regulates PybcK by activating it, increasing stress response and tolerance. Similarly, the DNA-180 

binding regulator YidZ binds to Prof (Figure 5). When YidZ is activated under stressed 181 

conditions, Prof is activated, which ensures that the genes responding to environmental stress 182 

are transcribed correctly in order to properly limit the biological impact of the stress. 183 

 184 

DISCUSSION 185 

This study used a library of E. coli promoters to develop biosensors capable of detecting 186 

various molecules. By screening approximately 6,720 promoter-molecule combinations, we 187 

identified promoters that may respond to exposure to some of our molecules of interest. Notable 188 

results include the PgadB-YdeO promoter-transcription factor interaction, which achieved a 2.8-189 

fold increase in fluorescence over background fluorescence calculated in the screen and the 190 

PgrxA-CAR pairing, which showed a 260% specificity increase over competing molecules. 191 

These findings establish a foundation for further biosensor development. 192 

A key contribution of this study lies in validating the fluorescence trends across varying 193 

molecule concentrations. The consistently increasing fluorescence supported the hypothesis 194 

that these molecules act as inducers for GFP transcription. However, certain inconsistencies in 195 

fluorescence levels at intermediate concentrations indicate the need for replicates to enhance 196 

the robustness of these trends. Environmental conditions, including media composition and 197 

incubation duration, could also influence fluorescence and warrant further standardization. 198 

The incorporation of a multi-stream neural network significantly advanced our ability to 199 

predict fluorescence outcomes for promoter-molecule pairings. The inclusion of promoter DNA 200 

sequences notably enhanced model accuracy, yielding a high ROC AUC of 0.96, which 201 

underscores the model's reliability. This approach provides a scalable framework for predicting 202 

biosensor viability beyond the molecules tested here. 203 

Despite these successes, several limitations are present in this study. First, while the 204 

study utilized a diverse range of molecules, expanding the scope to include additional 205 

compounds could refine the model’s generalizability. Second, while dropout regularization 206 
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improves model performance, further optimization of hyperparameters may enhance accuracy 207 

and reduce potential overfitting. Additionally, the docking simulations, although informative, 208 

were constrained to specific DNA-protein interactions. Broader simulations could provide deeper 209 

insights into the mechanistic interactions underlying the observed fluorescence. 210 

The identified promoter-molecule pairs provide a starting point for developing tailored 211 

biosensors applicable in fields ranging from environmental monitoring to healthcare diagnostics. 212 

For instance, the PgrxA promoter’s specificity to carbaryl suggests its potential in detecting 213 

pesticide residues. Similarly, the robust performance of the PgadB-ydeO interaction in acidic 214 

conditions highlights its utility in studying stress-response pathways in bacteria. 215 

Future research should focus on validating these findings through in vivo studies and 216 

exploring their applications in real-world scenarios. Additionally, expanding the dataset and 217 

refining machine learning algorithms will enhance predictive accuracy, enabling more efficient 218 

biosensor design. Ultimately, this study underscores the potential of synthetic biology in 219 

addressing pressing environmental and healthcare challenges through innovative biosensor 220 

technologies. 221 

 222 

MATERIALS AND METHODS 223 

Media and Chemicals 224 

LB Broth medium was created using 50 g yeast extract, 50 g peptone, and 25 g sodium 225 

chloride to 5 L of water in a volumetric flask and mixed with a magnetic stir bar. The medium 226 

was divided into several bottles and autoclaved. One milliliter of 1000X Kanamycin (25 mg/mL) 227 

was added to each autoclaved 1 L bottle before use. The minimal M9 medium was prepared by 228 

adding 52 g M9 salts (KH2PO4 at 15 g/L, NaCl at 2.5 g/L, Na2HPO4 at 33.9 g/L, NH4Cl at 5 g/L) 229 

into 4.9 L of DI water. The medium was autoclaved and stored at room temperature. Then, 20 g 230 

filter-sterilized glucose was added to the M9 salt solution to a final concentration of 20 mM. A 231 

10mL MgSO44 (2 mM) and 0.5ml CaCl2 (0.1 mM) was added to the 5 L solution before use. 232 

Based on their available quantities, the molecules were dissolved into individual 233 

solutions. A 500mM solution for 3-Phenoxybenzoic Acid (128.4 mg in 1 mL DMSO), Lovastatin 234 

(242.7 mg in 1 mL DMSO), Propoxur (125.4 mg in 1 mL ethanol), and Perfluorooctane 235 

Sulfonate (247.6 mg in 1 mL water) was created. Diethyl Phthalate was already in a solution of 236 

121.2 µL. A 1 M solution of Tartaric Acid (150 mg in 1 mL water), Carbaryl (201.22 mg in 1 mL 237 

DMSO), Butanoyl-Homoserine Lactone (171.19 mg in 1 mL DMSO), Phenylglyoxylic Acid 238 

(150.13 mg in 1 mL DMSO), and Cis-Naphthalene Dihydrodiol (162.16 mg in 1 mL water). 239 

  240 
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Strains 241 

All strain handling was done in 96 well plates. To each well of the plates, 250µL of LB 242 

Broth with kanamycin was added using a multichannel pipette. The promoter collection is 243 

supplied in twenty-one 96 well plates. To inoculate the strains, one of the twenty-one plates was 244 

removed from the -80° freezer. Sterile tips attached to a Gilson PlateMaster machine were 245 

lowered onto the 96-well strain plate, moved side to side to collect some bacteria, then lifted and 246 

lowered onto one of the 96-deep-well plates with the media. The pipettes were mixed in the 247 

broth to distribute the bacteria. A gas permeable covering was rolled onto the top of each of 248 

these plates and they were grown overnight in an incubator at 37°C with 900 RPM orbital 249 

shaking to encourage E. coli growth. 250 

  251 

Fluorescence Assays 252 

One mL of 1 mM concentrated molecule stocks were added to 200mL of M9 media. 253 

Each of the stocks were then thoroughly mixed with the M9 media through using stir bars and 254 

heating up to dissolve the concentrated molecule stocks. Using a multichannel pipette, 275 µL 255 

of each molecule M9 solution was added to each well of the different 96-deep-well plates. For 256 

each plate, a Gilson PlateMaster was used to add 2.75 µL of cells with promoters into each well 257 

containing molecules. Each promoter was matched to each different molecule for one iteration. 258 

The PlateMaster was also used to transfer 150 µL from the assay deep well plates into a 96-well 259 

black walled, clear bottom plate. The 96-well plates were inputted into the Plate Reader at 37°C 260 

with shaking for 10 seconds to measure absorbance in each well using a 600nm wavelength 261 

and fluorescence with 485 nm excitation wavelength and 510 nm emission wavelength. The 262 

resulting data was analyzed to select the 8-12 promoters with at least a 1.35 average 263 

sfGFP/OD600 divided by average promoter value for each molecule. 264 

  265 

Dose Responses 266 

500µL of 1x Kanamycin LB broth was added to each well of 96-deep-well plates using a 267 

multichannel pipette. The startup procedure was repeated on only the most fluorescent 268 

promoters selected, with autoclaved toothpicks used to transfer cells into the wells. After the 269 

strains grew in the incubator overnight, 2.75μL cells/well were added to another 96-deep-well 270 

plate. For titration, serial dilutions of eight concentrations of the molecule (0 nM, 10 nM, 100 nM, 271 

1 µM, 10 µM, 100 µM, 1 mM, and 10 mM) with three replicates for each were prepared for each 272 

molecule-promoter pair. After 24 hr growth the plates were analyzed the same as above. The 273 
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trends of fluorescence with increasing concentration of the respective molecules were analyzed 274 

to identify the best promoter to detect each. 275 

  276 

Machine Learning 277 

Using data produced from wet lab experiments, we created and trained a multi-stream 278 

neural network machine learning model that predicts if a molecule-E. coli promoter combination 279 

generates a fluorescent response. 280 

Our input variables consisted of molecule name, promoter protein sequence, promoter 281 

DNA sequence, and molecular structure. Our output variable was the significance (fluorescent 282 

response) of the molecule promoter pair. Class distributions were analyzed to ensure that the 283 

class split was close to 50-50 to ensure equal data feeding of each class. Each input variable in 284 

text form was transformed into numerical values. Molecule name was assigned a value between 285 

1 to 10. Promoter protein sequence was encoded into a numerical value using label encoded 286 

and promoter DNA sequence was encoded using a hash function which condensed 10,000 287 

base-pair long DNA sequences into a value less than 1000. Molecular structure images were 288 

stored as NPZs for the model to analyze. All input variables were normalized and divided by a 289 

common number to contain ranges from 0 to 1. Train, test, and validation datasets were 290 

generated by grouping the original data into 70-20-10 split randomly. 291 

The model was first tested without DNA data of each promoter sequence. Loss results 292 

were obtained from this model. Then the DNA data (from EcoCyc) was added to obtain new 293 

loss results. The model was designed to combine both the image and tabular inputs by building 294 

a multi modal pipeline. The image was analyzed using a convolutional neural network and the 295 

tabular data was analyzed using a dense neural network. The two modes were trained 296 

independently on the surface level and then combined to analyze trends in both simultaneously. 297 

The model outputs a probability between 0 and 1 for the pair to produce a fluorescent response. 298 

Thresholds >0.5 for class 1 and <0.5 for class 0 were defined to ensure a binary output. The 299 

model was then tested on the generated test data to ensure little to no overfitting. An ROC 300 

curve (a plot of the number of false positive results generated by the model versus the number 301 

of true positive results when testing data was used) was created to visualize the results. 302 

 303 

Modeling 304 

To model DNA-protein interactions, three primary promoters were selected for their high 305 

titration levels with BHL in our research: PybcK, PgadB, and Prof. Using the Ecocyc database, we 306 

identified transcription factors that bind to these promoters. Then, the nucleotide sequences of 307 
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the promoters and the protein sequences of the transcription factors were input into AlphaFold 308 

to generate predictions of DNA-protein complexes. The resulting models were visualized in 309 

PyMol to identify and analyze the binding interfaces. 310 

 311 
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 333 

Figures and Figure Captions 334 

 335 

Figure 1. Schematic of the methodology used in this research 336 

 337 

Figure 2. sfGFP/OD600 trends across increasing concentrations from 0 M to 10 mM of the 338 

molecule for the four best performing molecule-promoter combinations, A) BHL with the Pydel 339 

promoter, B) CND with the PybcK promoter, C) CND with the PaegA promoter, D) DEP with the 340 

PyfiF promoter. The error bars represent ±1 SD. 341 

  342 
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 343 

Figure 3. The sfGFP/OD600 value for the A) PgrxA promoter and the B) PyhcA promoter across all 344 

ten molecules screened. CAR produced the one of the largest fluorescent signals with grxA and 345 

DEP produced one of the largest fluorescent signals with yhcA, with both values highlight in 346 

orange in their respective graphs. 347 

 348 

Figure 4. Plasmid map created with gadB fused to sfGFP to serve as a potential biosensor for 349 

Butanoyl-Homoserine Lactone when transformed into E. coli. The structure indicates the 350 

plasmid structure, promoter regions, and replication origins. 351 
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 352 

Figure 5. Modeling of the interactions between proteins and transcriptional factors. A) Binding 353 

of transcriptional factor YdeO(green) to gadB, where YdeO activated the transcription initiation 354 

for gadB. B) Binding of transcriptional factor Nac(blue) to ybcK, where Nac initiated 355 

transcription. C) Binding between transcriptional factor YidZ to Prof, where YidZ inhibits 356 

transcription initiation 357 

 358 

Figure 6. Training and validation loss, represented by the teal and orange lines respectively, A) 359 

without and B) with the addition of nucleotide data from EcoCyc. C) Class distributions (binary) 360 
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of data (fluorescent and non-fluorescent), D) Receiver Operating Characteristic curve and area 361 

based on the true and false positive rates 362 

 363 

Figure 7. Training, validation, and testing accuracy + sensitivity and specificity of model with 364 

varied dropout and regularization levels (red represents regular, yellow represents inclusion of 365 

dropout, purple represents inclusion of regularization, and green represents both) A) without 366 

and B) with addition of nucleotide sequences to training data, respectively. C) Comparison of 367 

training, validation, and testing accuracies + sensitivity and specificity after addition of DNA data 368 

with purple presenting lack of DNA sequences and green representing the presence of them 369 
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1.60 

yrbL 

1.73 

ydcJ 

1.51 

metK 

1.53 

yaeH 

1.55 

yjbJ 

1.62 

gsk 

1.51 

yqjF 

1.52 

thrU 

1.37 

hslV 

1.37 

sieB 

1.60 

ycjM 

1.70 

alsB 

1.48 

pppA 

1.53 

rof 

1.54 

tnaC 

1.52 

yqjF 

1.51 

b4283 

1.48 

yciG 

1.36 

yeiP 

1.37 

metC 

1.56 

 yibL 

1.60 

cspB 

1.45 

yaaJ 

1.50 

yhbX 

1.52 

uspG 

1.51 

aspA 

1.50 

ydeI 

1.45 

ychH 

1.35 

fdoG 

1.37 

U139 

1.56 

 ygeY 

1.58 

nmpC 

1.42 

yaaW 

1.50 

slp 

1.50 

ygjH 

1.49 

hyfR 

 1.46 

yeiP 

1.44 

ybhQ 

1.35 

ypfG 

1.36 

rihC 

1.51 

ycjG 

1.55 

rpmE 

1.40 

glnK 

1.42 

ygjG 

1.50 

pitB 

1.47 

aes 

1.42 

deoB 

1.40 

sodC —- —- 

1.42 

aldH 

1.55 

yhjY 

1.40 

ylbE 

1.42 

cca 

1.49 

prpR 

1.45 

rfe 

1.42 

ygiW 

1.39 

hupA —- —- 

1.40 

yafS 

1.53 

cspD 

1.40 

ykgM 

1.39 

yhfG 

1.49 

ygeH 

1.45 

eaeH 

1.38 

ycdZ 

1.39 

galR —- —- 

1.40 

hscB 

1.52 

uspF 

1.39 

yedP 

1.39 

yfiF 

1.46 

rhsD 

1.41 

U139 

1.38 

mglB 

1.38 

rssB —- —- 

Table 1. The sfGFP/OD600 divided by average promoter value and promoter name of the best 371 

8-12 promoters that produced the highest fluorescence for each of the ten molecules. PBA 372 

represents 3-Phenoxybenzoic Acid, LOV represent Lovastatin, PRO represents Propoxur, DEP 373 

represents Diethyl Phthalate, TAR represents Tartaric Acid, CAR represents Carbaryl, BHL 374 

represents Butanoyl-Homoserine Lactone, PGA represents Phenylglyoxylic Acid, PFS 375 

represents Perfluorooctane Sulfonate, and CND represents Cis-Naphthalene Dihydrodiol. To 376 

establish a basis for biosensor development, a series of experiments were conducted using the 377 

library of promoters and these ten molecules that we selected to determine which combination 378 

was most effective by observing their fluorescence. While the level of fluorescence in our final 379 

strains had some drops and inconsistencies at certain concentrations, the overall increasing 380 

trend indicated that these strains can be further researched to be eventually developed into 381 

effective biosensors. 382 
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