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SUMMARY

The field of synthetic biology makes significant contributions to healthcare, environmental
engineering, and technology through the manipulation of cellular macromolecules and whole
organisms. Oftentimes, these advancements are dependent upon biosensors to report on an
activity of interest within a cell or to detect extracellular cues and report on them in a
measurable way. This project was undertaken as part of IGEM 2024 (Internationally Genetic
Engineered Machines Competition 2024) centered around the choice of 10 small molecules
related to environmental and human health with the goal of developing transcriptional
biosensors to report on their concentrations. Each molecule was screened against a library of
over 2000 promoter-GFP constructs in search of promoters responsive to each molecule.
Further, a Deep Learning model was used to predict active promoter-molecule pairs and in silico
putative hits from the screen were analyzed with molecular docking. While no robust biosensor
hits were found for the molecules of interest, our work demonstrates a useful pipeline for further

small molecule biosensor development.

INTRODUCTION

Biosensors are analytical devices that elicit a measurable signal in response to specific
biological processes or the presence of a molecule. Using these tools, scientists have made
crucial breakthroughs in disease diagnosis and drug detection (such as measuring the
remaining medicine in a bloodstream), environmental monitoring, food control, forensics, and
biotechnology [1]. Biosensor development is often the first step in the detection and

biodegradation of toxic chemical compounds, such as residual pesticides on fruits and
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38  vegetables, microbial degradation products, and the presence of Persistent Organic Pollutants
39 (POP). In a laboratory setting, an ideal biosensor elicits a response proportional to the amount
40  of analyte present through the action of a “transducer” that recognizes the analyte and

41  generates a measurable output.

42 This study was specifically focused on developing allosteric transcription factor (TF)-

43 based biosensors in E. coli. Currently, there is a lack of well-established biosensors for

44 numerous health and environmentally relevant molecules. Therefore, the goal of this project is
45  to identify TF-promoter pairs that respond to several different molecules as a starting point for
46  future biosensor development. TFs are able to bind small molecule ligands and, as a result of
47  this binding, can impact the transcription of target genes. TFs rely on promoter sequences to
48  control their responses. Promoters are DNA sequences that regulate when and how strongly a
49  gene is expressed. In bacteria, biosensors often produce Green Fluorescent Protein (GFP)

50  under the control of a specific promoter as the measurable output. GFP produces a fluorescent
51  signal that can be measured to determine if the promoter driving its expression is responsive to
52 small molecule induction [2]. A 2006 paper from the Weizmann Institute of Science presents a
53  comprehensive library of ~2000 transcriptional promoters from Escherichia coli K12 called the
54 Horizon Promoter Collection (HPC). E. coli is a well-studied gram-negative bacterium commonly
55 used for biosensor development since the strain is easily cultured and manipulated, and

56  nonpathogenic, making it an ideal biosensor chassis [3]. Each promoter in the HPC carries a
57  unique promoter (covering most well-known E. coli promoters) cloned to drive GFP from a low-
58  copy number plasmid. This collection presents an exciting opportunity to explore a multitude of
59 different molecules and promoter combinations to aid in developing biosensors.

60  Ten molecules were chosen to test with each of the promoters in the HPC because of their

61 relevance to human and environmental health. Development of biosensors for these molecules
62  would prove useful in commercial and clinical settings. The molecules chosen were: carbaryl
63  (CAR), 3-phenoxybenzoic acid (PBA), lovastatin (LOV), butanoyl-homoserine (BHL),

64  phenylglyoxylic acid (PGA), propoxur (PRO), perfluorooctane sulfonate (PFS), cis-naphthalene
65 dihydrodiol (CHD), diethyl phthalate (DEP), and tartaric acid (TAR). Carbaryl is a man-made
66  pesticide toxic to insects and over 190 registered pesticide products contain it [4]. 3-

67  phenoxybenzoic acid is a prominent environmental contaminant because it is a degradation

68  product of pyrethroid insecticides [5]. Lovastatin is a medication that is used to lower cholesterol
69 levels in blood and help prevent cardiovascular diseases such as heart attacks or strokes [6].
70  Butanoyl-homoserine lactone is a signaling molecule used in quorum sensing and is used in

71  synthetic biology to engineer bacterial systems with customized gene expression profiles [7].
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Phenylglyoxylic acid is a breakdown product of styrene, a material used to make plastics and
rubber, making it an exposure biomarker used in environmental and occupational health to
monitor the level of styrene and other related compounds [8]. Propoxur is a carbamate
insecticide used to control a variety of pests; however, long term exposure can cause
decreased cholinesterase levels in humans [9]. Perfluoro octane sulfonate is a man-made
surfactant and global pollutant as it can cause cancer and developmental toxicity [10]. Cis-
Naphthalene dihydrodiol is an intermediate in the microbial degradation of naphthalene, an
insecticide, making it a useful biomarker [11]. Diethyl Phthalate is a synthetic substance used to
make plastic more flexible, and it easily contaminates the environment when diluted with other
liquids [12]. Tartaric acid is a type of alpha hydroxy acid naturally found in many plants, and it is
commonly used to generate carbon dioxide. It acts as a muscle toxin by inhibiting the production
of malic acid [13]. Cumulatively, these representative compounds span diverse molecular and

functional classes and make for compelling screening candidates.

RESULTS
High-Throughput HPC Screen

To establish a basis for this project, an initial high-throughput screen was performed to
nominate any potential promoters responsive to each inducer molecule. This screen was
conducted by testing each of the ten molecules against the entire promoter library. The testing
was carried out in 96-well plate format, with cells grown in LB and a single inducer at 500 mM.
After incubation for 24 hours, fluorescence was measured with a plate reader and wells with the
highest fluorescence were nominated for downstream studies. The 8-12 promoters that
produced the most fluorescence greater than 1.35 AU (average sfGFP/OD600 divided by
average promoter value for each molecule) for each of the molecules were identified (Table 1).

Because of the scale of the initial screen, it was undertaken at only one concentration of
inducer and with only one replicate of each strain. Therefore, any putative hits were followed up
using a titration of the inducer molecules and in triplicate. The strains were titrated across eight
concentrations from 0 to 10 mM of their corresponding molecules to examine how the
fluorescence varies with concentration. We expected to see a dose-dependent response in
fluorescence to increasing inducer molecules. While many promoters did not follow the
expected trend, some were indeed titratable: BHL with the Pyqel promoter produced a 1.7 times
fold increase, CND with the Pyscx promoter produced a 2.2 times fold increase, CND with the
Paega promoter produced a 2.8 times fold increase, and DEP with the Pysr promoter produced a

2.0 times fold increase from the lowest to highest measurement (Figure 2).
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To test the specificity of our results and take the background activity of each promoter
into account, we compared the molecule-specific sSfGFP value to the average sfGFP value
across the other 9 screened molecules. In one example, a CAR-induced 260% increase of grxA
sfGFP/OD600 over the average sfGFP/OD600 indicates molecule-specific activation of this
promoter (Figure 3).

We next sought to pursue optimization of the biosensors by exploring alternative plasmid
architectures including changing the origin of replication to vary copy number, the fluorescent
protein, and its ribosomal binding site. We generated and annotated a plasmid map with gadB
fused to sfGFP (responsive to Butanoyl-Homoserine Lactone) and indicated the plasmid
structure, promoter regions, and replication origins for use (Figure 4). While we did not have
time to clone new variants of the plasmid, the map may be a useful starting point for others

continuing our work.

Machine Learning

A deep learning multi-stream neural network was used to predict whether a given
molecule-promoter pair produces a fluorescent response. After training, the model was able to
correctly classify a molecule-promoter pair as fluorescent or non-fluorescent 96% of the time,
indicating precise and consistent results.

Training, validation, and test data for this model were all molecule-promoter
combinations that belong to one of two classes: fluorescent response or non-fluorescent
response. Class distributions of the inputs to the machine learning model show an even
distribution of data belonging to each class — ~48 and ~52 for non-fluorescence and
fluorescence, respectively (Figure 6C). This indicates that the data was well-split and the model
remained unbiased towards either class.

To understand the impact of adding DNA promoter sequences to the multi-stream neural
network, the two machine learning networks (one with the sequences and one without) were
compared. Firstly, the capabilities of each network were compared to understand their accuracy.
Both loss graphs decrease over multiple epochs, indicating that both models achieved a higher
accuracy as they iterate over the data. Both graphs eventually plateau, demonstrating that each
model achieves its best accuracy by the end of its training. The validation data line continues to
remain close to the training, indicating that the model was able to achieve a balance between
learning and generalizing without overfitting. An accuracy of 96% (>80%) and low loss of both

models also rule out the possibility of the model underfitting.
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Our next goal was to compare the two accuracies and capabilities of the models with
and without the DNA sequences. In the model without the DNA data, training and validation loss
plateaued at a higher value than in the model with DNA data (Figure 6). Loss and accuracy are
inversely proportional. Plots of the loss curve without DNA data (Figure 7A) and the loss curve
with DNA data (Figure 7B) plateau at ~5 and ~0.05, respectively, suggesting a lower accuracy
for the model without nucleotide sequences.

A Receiver Operating Characteristic (ROC) plots the False Positive Rate vs the True
Positive Rate. The ROC curve of the predictions generated by the model (Figure 6D) has an
area under the curve of 0.96, which represents the testing accuracy for the model. The high
area under the curve also showcases the ability of the model to maximize the True Positive
Rate while minimizing the False Positive Rate.

Additional statistics depict the effect of adding DNA sequences on the accuracy of the
model and a dropout is used to mitigate any possible overfitting. Dropouts remove random
subsets of neurons in the network during each iteration throughout the training process. This
ensured that the model did not memorize the training data. As demonstrated by statistical
analysis of model outputs, though training accuracy drops slightly, the validation and testing
accuracies improve in both iterations of the model (with and without DNA data), suggesting that
the use of dropout and regularization increases the generalization of the data, creating a more
useful and wide-scale model. Finally, we present the accuracy metrics as a percentage (ranging
from 75-95%). The data supports the conclusions made above: the model is more accurate
when DNA data is used and the data is regularized due to the incorporation of more data that
better aids the model in making a more informed decision of the fluorescence of a molecular-

promoter pair (Figure 7).

Modeling

A molecular docking process was utilized to better understand the physical interactions
behind potential DNA-TF pairs by visualizing the DNA-protein interactions between transcription
factors and their cognate promoters. Pgade, Pgads, and Pydeo were some of the promoters
identified to have the largest fold increase with increasing concentrations of the respective
molecule they detect (Table 1). The YdeO promoter controls expression of gadB, part of the
acid-resistant GAD pathway. Structural modeling of Pyqe0 binding to its transcription factor,
GadB, reveals the nucleotides critical for stable binding and the position of the alpha helix
oriented perpendicular to the DNA backbone (Figure 5). In the future, this information could

allow for targeted mutagenesis of the transcription factor DNA binding domain or the promoter
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sequence to enhance binding and improve the dynamic range of the sensor. Additionally, the
modeling helps our understanding of small molecule-protein interactions, which can guide future
biosensor development by identifying which molecular structures are more compatible with
which compounds.

Simulation of the Nac transcription factor showed binding to a double helix present on
the structure of Pyuek (Figure 5). Nac controls biotic and abiotic stress tolerance, and
overexpression of Nac through cell engineering approaches can improve stress tolerance. Nac
regulates Pyuek by activating it, increasing stress response and tolerance. Similarly, the DNA-
binding regulator YidZ binds to P..s (Figure 5). When YidZ is activated under stressed
conditions, P is activated, which ensures that the genes responding to environmental stress

are transcribed correctly in order to properly limit the biological impact of the stress.

DISCUSSION

This study used a library of E. coli promoters to develop biosensors capable of detecting
various molecules. By screening approximately 6,720 promoter-molecule combinations, we
identified promoters that may respond to exposure to some of our molecules of interest. Notable
results include the PgadB-YdeO promoter-transcription factor interaction, which achieved a 2.8-
fold increase in fluorescence over background fluorescence calculated in the screen and the
PgrxA-CAR pairing, which showed a 260% specificity increase over competing molecules.
These findings establish a foundation for further biosensor development.

A key contribution of this study lies in validating the fluorescence trends across varying
molecule concentrations. The consistently increasing fluorescence supported the hypothesis
that these molecules act as inducers for GFP transcription. However, certain inconsistencies in
fluorescence levels at intermediate concentrations indicate the need for replicates to enhance
the robustness of these trends. Environmental conditions, including media composition and
incubation duration, could also influence fluorescence and warrant further standardization.

The incorporation of a multi-stream neural network significantly advanced our ability to
predict fluorescence outcomes for promoter-molecule pairings. The inclusion of promoter DNA
sequences notably enhanced model accuracy, yielding a high ROC AUC of 0.96, which
underscores the model's reliability. This approach provides a scalable framework for predicting
biosensor viability beyond the molecules tested here.

Despite these successes, several limitations are present in this study. First, while the
study utilized a diverse range of molecules, expanding the scope to include additional

compounds could refine the model’s generalizability. Second, while dropout regularization
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improves model performance, further optimization of hyperparameters may enhance accuracy
and reduce potential overfitting. Additionally, the docking simulations, although informative,
were constrained to specific DNA-protein interactions. Broader simulations could provide deeper
insights into the mechanistic interactions underlying the observed fluorescence.

The identified promoter-molecule pairs provide a starting point for developing tailored
biosensors applicable in fields ranging from environmental monitoring to healthcare diagnostics.
For instance, the PgrxA promoter’s specificity to carbaryl suggests its potential in detecting
pesticide residues. Similarly, the robust performance of the PgadB-ydeO interaction in acidic
conditions highlights its utility in studying stress-response pathways in bacteria.

Future research should focus on validating these findings through in vivo studies and
exploring their applications in real-world scenarios. Additionally, expanding the dataset and
refining machine learning algorithms will enhance predictive accuracy, enabling more efficient
biosensor design. Ultimately, this study underscores the potential of synthetic biology in
addressing pressing environmental and healthcare challenges through innovative biosensor

technologies.

MATERIALS AND METHODS
Media and Chemicals

LB Broth medium was created using 50 g yeast extract, 50 g peptone, and 25 g sodium
chloride to 5 L of water in a volumetric flask and mixed with a magnetic stir bar. The medium
was divided into several bottles and autoclaved. One milliliter of 1000X Kanamycin (25 mg/mL)
was added to each autoclaved 1 L bottle before use. The minimal M9 medium was prepared by
adding 52 g M9 salts (KH2.PO4 at 15 g/L, NaCl at 2.5 g/L, Na,HPO, at 33.9 g/L, NH4Cl at 5 g/L)
into 4.9 L of DI water. The medium was autoclaved and stored at room temperature. Then, 20 g
filter-sterilized glucose was added to the M9 salt solution to a final concentration of 20 mM. A
10mL MgS044 (2 mM) and 0.5ml CaCl; (0.1 mM) was added to the 5 L solution before use.

Based on their available quantities, the molecules were dissolved into individual
solutions. A 500mM solution for 3-Phenoxybenzoic Acid (128.4 mg in 1 mL DMSOQ), Lovastatin
(242.7 mg in 1 mL DMSO), Propoxur (125.4 mg in 1 mL ethanol), and Perfluorooctane
Sulfonate (247.6 mg in 1 mL water) was created. Diethyl Phthalate was already in a solution of
121.2 yL. A 1 M solution of Tartaric Acid (150 mg in 1 mL water), Carbaryl (201.22 mg in 1 mL
DMSO), Butanoyl-Homoserine Lactone (171.19 mg in 1 mL DMSO), Phenylglyoxylic Acid
(150.13 mg in 1 mL DMSO), and Cis-Naphthalene Dihydrodiol (162.16 mg in 1 mL water).
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Strains

All strain handling was done in 96 well plates. To each well of the plates, 250uL of LB
Broth with kanamycin was added using a multichannel pipette. The promoter collection is
supplied in twenty-one 96 well plates. To inoculate the strains, one of the twenty-one plates was
removed from the -80° freezer. Sterile tips attached to a Gilson PlateMaster machine were
lowered onto the 96-well strain plate, moved side to side to collect some bacteria, then lifted and
lowered onto one of the 96-deep-well plates with the media. The pipettes were mixed in the
broth to distribute the bacteria. A gas permeable covering was rolled onto the top of each of
these plates and they were grown overnight in an incubator at 37°C with 900 RPM orbital

shaking to encourage E. coli growth.

Fluorescence Assays

One mL of 1 mM concentrated molecule stocks were added to 200mL of M9 media.
Each of the stocks were then thoroughly mixed with the M9 media through using stir bars and
heating up to dissolve the concentrated molecule stocks. Using a multichannel pipette, 275 pyL
of each molecule M9 solution was added to each well of the different 96-deep-well plates. For
each plate, a Gilson PlateMaster was used to add 2.75 uL of cells with promoters into each well
containing molecules. Each promoter was matched to each different molecule for one iteration.
The PlateMaster was also used to transfer 150 uL from the assay deep well plates into a 96-well
black walled, clear bottom plate. The 96-well plates were inputted into the Plate Reader at 37°C
with shaking for 10 seconds to measure absorbance in each well using a 600nm wavelength
and fluorescence with 485 nm excitation wavelength and 510 nm emission wavelength. The
resulting data was analyzed to select the 8-12 promoters with at least a 1.35 average

sfGFP/OD600 divided by average promoter value for each molecule.

Dose Responses

500uL of 1x Kanamycin LB broth was added to each well of 96-deep-well plates using a
multichannel pipette. The startup procedure was repeated on only the most fluorescent
promoters selected, with autoclaved toothpicks used to transfer cells into the wells. After the
strains grew in the incubator overnight, 2.75uL cells/well were added to another 96-deep-well
plate. For titration, serial dilutions of eight concentrations of the molecule (0 nM, 10 nM, 100 nM,
1 uM, 10 uM, 100 uM, 1 mM, and 10 mM) with three replicates for each were prepared for each

molecule-promoter pair. After 24 hr growth the plates were analyzed the same as above. The
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trends of fluorescence with increasing concentration of the respective molecules were analyzed

to identify the best promoter to detect each.

Machine Learning

Using data produced from wet lab experiments, we created and trained a multi-stream
neural network machine learning model that predicts if a molecule-E. coli promoter combination
generates a fluorescent response.

Our input variables consisted of molecule name, promoter protein sequence, promoter
DNA sequence, and molecular structure. Our output variable was the significance (fluorescent
response) of the molecule promoter pair. Class distributions were analyzed to ensure that the
class split was close to 50-50 to ensure equal data feeding of each class. Each input variable in
text form was transformed into numerical values. Molecule name was assigned a value between
1 to 10. Promoter protein sequence was encoded into a numerical value using label encoded
and promoter DNA sequence was encoded using a hash function which condensed 10,000
base-pair long DNA sequences into a value less than 1000. Molecular structure images were
stored as NPZs for the model to analyze. All input variables were normalized and divided by a
common number to contain ranges from 0 to 1. Train, test, and validation datasets were
generated by grouping the original data into 70-20-10 split randomly.

The model was first tested without DNA data of each promoter sequence. Loss results
were obtained from this model. Then the DNA data (from EcoCyc) was added to obtain new
loss results. The model was designed to combine both the image and tabular inputs by building
a multi modal pipeline. The image was analyzed using a convolutional neural network and the
tabular data was analyzed using a dense neural network. The two modes were trained
independently on the surface level and then combined to analyze trends in both simultaneously.
The model outputs a probability between 0 and 1 for the pair to produce a fluorescent response.
Thresholds >0.5 for class 1 and <0.5 for class 0 were defined to ensure a binary output. The
model was then tested on the generated test data to ensure little to no overfitting. An ROC
curve (a plot of the number of false positive results generated by the model versus the number

of true positive results when testing data was used) was created to visualize the results.

Modeling
To model DNA-protein interactions, three primary promoters were selected for their high
titration levels with BHL in our research: Pybck, Pgads, and Pror. Using the Ecocyc database, we

identified transcription factors that bind to these promoters. Then, the nucleotide sequences of
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the promoters and the protein sequences of the transcription factors were input into AlphaFold
to generate predictions of DNA-protein complexes. The resulting models were visualized in

PyMol to identify and analyze the binding interfaces.
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Figure 2. sSfGFP/OD600 trends across increasing concentrations from 0 M to 10 mM of the
molecule for the four best performing molecule-promoter combinations, A) BHL with the Pyge
promoter, B) CND with the Pyucx promoter, C) CND with the Paega promoter, D) DEP with the

Pyir promoter. The error bars represent £1 SD.
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344  Figure 3. The sfGFP/OD600 value for the A) Pgxa promoter and the B) Pynca promoter across all
345  ten molecules screened. CAR produced the one of the largest fluorescent signals with grxA and
346  DEP produced one of the largest fluorescent signals with yhcA, with both values highlight in

347  orange in their respective graphs.
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350  Butanoyl-Homoserine Lactone when transformed into E. coli. The structure indicates the

351  plasmid structure, promoter regions, and replication origins.
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353  Figure 5. Modeling of the interactions between proteins and transcriptional factors. A) Binding

354  of transcriptional factor YdeO(green) to gadB, where YdeO activated the transcription initiation

355 for gadB. B) Binding of transcriptional factor Nac(blue) to ybcK, where Nac initiated

356 transcription. C) Binding between transcriptional factor YidZ to P, where YidZ inhibits

357  transcription initiation
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359  Figure 6. Training and validation loss, represented by the teal and orange lines respectively, A)
360  without and B) with the addition of nucleotide data from EcoCyc. C) Class distributions (binary)
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361 of data (fluorescent and non-fluorescent), D) Receiver Operating Characteristic curve and area

362 based on the true and false positive rates
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364 Figure 7. Training, validation, and testing accuracy + sensitivity and specificity of model with

365 varied dropout and regularization levels (red represents regular, yellow represents inclusion of

366  dropout, purple represents inclusion of regularization, and green represents both) A) without

367 and B) with addition of nucleotide sequences to training data, respectively. C) Comparison of

368 training, validation, and testing accuracies + sensitivity and specificity after addition of DNA data

369  with purple presenting lack of DNA sequences and green representing the presence of them

370 Tables with Captions

PBA Lov PRO DEP TAR CAR BHL PGA PFS CND
2.08 2.84 1.83 2.67 213 4.29 1.89 2.01 245 1.97
fadB map mngR yhcA deoC ycfR eutB alaS yagK yffH

2.07 1.85 1.73 1.57 1.75 3.52 1.83 1.70 1.45 1.59
glgS rmf gcl yraR yciG recA gadW glyA yffH ybcK
1.80 1.81 1.57 1.56 1.71 2.82 1.56 1.52 1.40 1.45
ycfR ompX ypdA def yded grxA IpxC yhjY adhE asnA
1.63 1.73 1.52 1.53 1.67 275 1.53 1.52 1.39 1.44
cyoA rbsD yacH prpR alsB rrnD gadB ygiw fadB aegA
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1.60 1.73 1.51 1.53 1.55 1.62 1.51 1.52 1.37 1.37
yrbL ydcJ metK yaeH yjbJ gsk yqjF thru hslV sieB
1.60 1.70 1.48 1.53 1.54 1.52 1.51 1.48 1.36 1.37
ycjM alsB pPppA rof tnaC yajF b4283 yciG yeiP metC
1.56 1.60 1.45 1.50 1.52 1.51 1.50 1.45 1.35 1.37
yibL cspB yaaJ yhbX uspG aspA ydel ychH fdoG U139
1.56 1.58 1.42 1.50 1.50 1.49 1.46 1.44 1.35 1.36
ygeY nmpC yaaW slp ygjH hyfR yeiP ybhQ ypfG rihC
1.51 1.55 1.40 1.42 1.50 1.47 1.42 1.40

yciG rpmE ginK ygjG pitB aes deoB sodC — —

1.42 1.55 1.40 1.42 1.49 1.45 1.42 1.39

aldH yhjY ylbE cca prpR rfe ygiw hupA — —

1.40 1.53 1.40 1.39 1.49 1.45 1.38 1.39

yafS cspD ykgM yhfG ygeH eaeH ycdZ galR — —

1.40 1.52 1.39 1.39 1.46 1.41 1.38 1.38

hscB uspF yedP yfiF rhsD U139 mgIB rssB — —

Table 1. The sfGFP/OD600 divided by average promoter value and promoter name of the best

8-12 promoters that produced the highest fluorescence for each of the ten molecules. PBA

represents 3-Phenoxybenzoic Acid, LOV represent Lovastatin, PRO represents Propoxur, DEP

represents Diethyl Phthalate, TAR represents Tartaric Acid, CAR represents Carbaryl, BHL

represents Butanoyl-Homoserine Lactone, PGA represents Phenylglyoxylic Acid, PFS

represents Perfluorooctane Sulfonate, and CND represents Cis-Naphthalene Dihydrodiol. To

establish a basis for biosensor development, a series of experiments were conducted using the

library of promoters and these ten molecules that we selected to determine which combination

was most effective by observing their fluorescence. While the level of fluorescence in our final

strains had some drops and inconsistencies at certain concentrations, the overall increasing

trend indicated that these strains can be further researched to be eventually developed into

effective biosensors.
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